matematika dan berkreasi

Welcome

Komunitas Blogger Universitas Sriwijaya

kumpulan RPP DARI SMP KELAS VII- SMA KELAS XII

KUMPULAN RPP


RPP KELAS VII

Sekolah

Kelas

Mata pelajaran

Semester

 

Standar  kompetensi

: SMP…

: VII (tujuh)

: Matematika

: I (satu)

 

: BILANGAN

1.       Memahami sifat-sifat operasi hitung bilangan dan penggunaannya dalam pemecahan masalah

Kompetensi Dasar

Indikator

1.1 Melakukan operasi hitung bilangan bulat dan pecahan

·         Memberikan contoh bilangan bulat.

·         Menentukan letak bilangan bulat pada garis bilangan.

·         Melakukan operasi tambah, kurang, kali, dan bagi bilangan bulat termasuk operasi campuran.

·         Menghitung kuadrat dan pangkat tiga bilangan bulat.

·         Memberikan contoh berbagai bentuk dan jenis bilangan pecahan :biasa, campuran, desimal, persen.

·         Mengubahbentuk pecahan ke bentuk pecahan yang lain.

·         Menyelesaikan operasi hitung tambah, kurang, kali, bagi bilangan pecahan.

 

1.2 menggunakan sifat-sifat operasi hitung bilangan bulat dn pecahan dalam pemecahan masalah

·         Menemukan sifat-sifat operasi tambah, kurang, kali, bagi, pada bilangan bulat.

·         Menggunakan sifat-sifat operasi tambah, kurang, kali, bagi, pangkat, dan akar pada operasi  campuran bilangan bulat

·         Menggunakan sifat-sifat operasi bilangan bulat untuk menyelesaikan massalah yang berkaitan dengan kehidupan sehari-hari.

·         Menggunakan sifat-sifat operasi hitung tambah, kurang, kali, atau bagi dengan melibatkan pecahan serta mengaitkannya dalam kejadian sehari-hari.

 

Standar  kompetensi

ALJABAR

  2.Memahami bentuk aljabar, persamaan dan pertidaksamaan linear satu variabel

2.1 Mengenali bentuk aljabar dan unsur-unsurnya

·         Menjelaskan pengertian koefisien, variabel,konstanta, faktor, suku dan suku sejenis.

 

2.2 Melakukan operasi pada benuk aljabar

·         Melakukan operasihitung, tambah, kurang,kali, bagi, dan pangkat pada bentuk aljabar.

·         Menerapkan operasi hitung pada bentuk aljabar untuk menyelesaikan soal.

 

2.3 menyelesaikan  persamaan linear satu variabel

·         Mengenali PLSV dalam berbagaibentuk dan variable

·         Menentukan bentuk setara dari PLSV dengan cara kedua ruas ditambah, dikurangi, dikalikan atau dibagi dengan bilangan yang sama

·         Menentukan penyelesaian PLSV

2.4 Menyelesaikan pertidaksamaan linear satu variabel

·         Mengenali PtLSV dalam berbagai bentuk dan variabel.

·         Menentukan bentuk seara dari PtSLV dengan cara kedua ruas ditambah, dikurangi, dikalikan, atau dibagi dengan bilangan yang sama.

·         Menentukan penyelesaian PtSLV.

Standar  kompetensi

: ALJABAR

3.  Menggunakan bentuk aljabar, persamaan dan pertidaksamaan linier satu varibel, dan perbandingan dalam pemecahan masalah

Kompetensi Dasar

Indikator

3.1 membuat model matematika dari masalah yang berkaitan dengan persamaan dan petidaksamaan linear satu variabel

·         Mengubah masalah ke dalam model matematika berbentuk persamaan linear satu variabel.

·         Mengubah masalah kedalam model matematika berbentuk pertidaksamaan linear satu variable.

 

3.2 Menyelesaikan model matematika dari masalah yang berkaitan dengan persamaan linear satu variabel

·         Menyelesaikan model matematika suatu masalah yang berkaitan dnganpersamaan linear satu variabel.

·         Menyelesaikan model matematika suatu masalah yang berkaian dengan pertidaksamaan linear satu variabel.

3.3 menggunakan konsep aljabar dalam pemecahan masalah aritmetika social yang sederhana

·         Menghitung nilai keseluruhan ,nilai per-unit, dan nilai sebagian.

·         Menentukan besar dan persentase laba, rugi, harga jual, harga beli,rabat, bunga tunggal dalam kegiatan ekonomi.

3.4 Menggunakan perbandingan untuk pemecahan masalah

·         Menjelaskan pengertian skala sebagai suatu perbandingan.

·         Menghitung faktor perbesaran dan pengecilan pada gambar berskala.

·         Memberikan contoh masalah sehari-hari yang merupakan perbandingan seharga(senilai) dan berbalik harga (nilai).

·         Menyelesaikan soal yang melibatkan perbandingan seharga(senilai) dan berbalik harga(nilai).

 

 

 

 

Kelas

Mata pelajaran

Semester

 

Standar Kompetensi

: VII (tujuh)

:Matematika

: II (dua)

 

: ALJABAR

4. menggunakan konsep himpunan dan diagram venn dalam pemecahan masalah

Kompetensi Dasar

Indikator

4.1 Memahami pengertian dan notasi himpunan, serta penyajiannya.

 

·         Menyebutkan anggota dan bukan anggota himpunan

·         Menyatakan notasi himpunan

·         Mengenal himpunan kosong dan notasinya

4.2 Memahami konsep himpunan bagian.

·         Menetukan himpunan bagian dari suatu himpunan

·         Menetukan banyak himpunan bagian suatu himpunan

·         Mengenl pengertian himpunan semeta, serta dapat menyebutkan anggotanya

4.3 Melakukan operasi irisan, gabungan, kurang (difference), dan komplemen pada himpunan

 

·         Menjelaskan pengertian irisan dan gabungan dua himpunan

·         Menetukan irisan dan gabungan dua himpunan

·         Menjelaskan pengertian komplemen dari suat himpunan

·         Menentukan komplemen dari suatu himpunan

4.4 Menyajikan himpunan dengan diagram Venn

·         Menyajikan gabungan atau irisan dua himpunan dengan diagram venn

·         Menyajikan kurang (difference) suatu himpunan dari himpunan lainnya dengan digram venn

·         Menyajikan komplemen suatu himpunan

4.5 Menggunakan konsep himpunan dalam pemecahan masalah.

·         Menyelesaikan masalah dengan meggunakan diagram Venn dan konsep himpunan

Standar kompetensi

: GEOMETRI

5. memahami hubungan garis dengan gars, garis dengan sudut, sudut dengan sudut, seta menentukan ukurannya

Kompetensi Dasar

Indikator

5.1 Menentukan hubungan antara dua garis serta besar dan jenis sudut.

 

·         Menjelaskan kedudukan dua garis (ejajar,berimpit berpotongan, bersilangan ) melalui benakongkrit

·         Mengenal satuan sudut yang sering digunakan

·         Mengukur besar sudut dengan busur derajat

·         Menjelaskan perbedaan jenis sudut (siku, lancip, tumpul)

5.2 Memahami sifat –sifat sudut yang terbentuk jika dua garis berpotongan atau dua garis sejajar berpotongan dengan garis lain.

 

·         Mnemukan sifat sudut jika dua garis sejajar dipotong garis ketiga (garis lain)

·         Menggunakan sifat-sifat sudut dan garis untuk menyelesaikan soal

5.3 Melukis sudut

·         Melukis sudut yang besarnya sama dengan sudut yang diketahui dengan menggunakan busur dan jangka

·         Melukis sudut 600 dan 900.

5.4 membagi sudut

·         Membagi sudut menjadi 2 sama besar

·         Meluks sudut 300, 450, 1200, dn 1500.

 

 

Standar  kompetensi

: GEOMETRI

  6. memahami konsep segi empat dan segitiga serta menentukan ukurannya

Kompetensi dasar

Indikator

6.1  Mengidentifikasi sifat – sifat segitiga berdasarkan sisi dan sudutnya

 

·         Menjelaskan jenis-jenis segitiga berdasarkan sisi-sisinya

·         Menjelaskan jenis-jenis segitiga berdasarkan besar sudutnya

6.2 Mengidentifikasi sifat – sifat persegi panjang, persegi, trapesium, jajargenjang, belah ketupat dan layang – layang

 

·         Menjelaskan pengertian jajargenjang, persegi,persegi panjang, belah ketupat, trapezium dan laying-layang menurut sifatnya.

·         Menjelaskan sifat-sifat segi empat ditinjau dari sisi, sudut, dan diagoalnya.

6.3 Menghitung keliling dan luas bangun segitiga dan segi empat serta menggunakannya dalam pemecahan masalah

·         Menurunkan rumus keliling bangun segitiga dan segi empat

·         Menurunkan rumus luas banugn segitiga dan segi empat

·         Menyelesaikan masalah yang berkaitan dengan menghitung keliling dan luas bangun segitiga dan segi empat

6.4 Melukis  segitiga, garistinggi,garis bagi, garis berat, dan garis sumbu

·         Melukis segitiga yang diketahui tiga sisinya, dua sisi satu sudut apitnya atau satu sisi dan dua sudut

·         Melukis segitiga sama sisi dan segitiga sama kaki

·         Melukis garis tinggi, garis bagi, garis berat dan garis sumbu

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RPP KELAS VIII

School Name: SMP and MTs
Subject: Mathematics
Class: VIII (Eight)
Semester: 1 (One)


Competency Standards           :3. Using the Pythagorean Theorem to solve the problem.

Basic Competence                    :3.1. Using the Pythagorean Theorem to determine the length of the  sides of a right triangle.

Indicators                                   :1. Finding the Pythagorean Theorem.

                                                       2. Calculating the length of the side of a right triangle if the two other sides are known.

                                                       3. Finding the inverse theorem of Pythagoras.

                                                       4. Know the Pythagorean triple.

                                                       5. Calculating the ratio of the sides of right triangles with special  angle (the angle is one).

 

Allocation of Time                   : 6 hours of lessons (3 meetings).


A. Learning Objectives.

a. Student  can find the Pythagorean Theorem.

b. Student can calculate the length of the right triangle if the two other sides are known.

c. Student can find the inverse theorem of Pythagoras.

d. Student can recognize Pythagorean triples.

e. Student can calculate the ratio of the sides of a right triangle with special angle (one corner is).


B. Instructional Materials.

 Pythagorean Theorem, namely concerning:
a. Finding the Pythagorean Theorem.
b. Finding the inverse theorem of Pythagoras.
c. Know the Pythagorean triple.
d. Applying the Pythagorean Theorem.
C. Learning Methods
Lecture, question and answer, discussion, and home work.

D. Activity Steps
 First Meeting:

a. Student are given an introduction to stimulate students in understanding the concept of Pythagorean Theorem,  calculate the length of the right triangle if the two other sides are known.

b. Student communicate orally or presented on the concept of the Pythagorean theorem and calculate the length of the right triangle if the two other sides is known in its own way.
c. Student  and teachers together to discuss example problems in the module by using the theorem of Pythagoras to determine the length of the sides in a right triangle.
d. Student  do the problems - in the module practice questions on how to determine the long side - the side of a right triangle using the Pythagorean Theorem, which is done in groups.

e. Student  and teachers together to discuss problems - problems that can not be solved by learners.

f. Teachers provide an independent duty to students in the form of matter - a matter of practice on Pythagoras Theorem.

 

E. Tools and Learning Resources

Source:
- Modul Mathematics SMP and MTs ESIS Class VIII Semester 1, written by Yuli Eko Tatag Siswono and Netti Lastiningsih things. 123-134, 137.
- Another reference book.

-Internet.


Tools:
- Laptop.
- LCD.
- OHP.

F. Rating

Technique                    : individual tasks.
Shape Instruments      : a brief description.
Example Instruments  :


1. If the long side of a right-angled triangle is a cm, b cm, and length of the hypotenuse is c cm, then write down the relationship between a, b, and c.

2. The length of one side of the bracket is 16 cm and the length of the hypotenuse is 20 cm. Calculate the length of the other bracket.

 

 

 

 


 

RPP KELAS IX

 

 

SMP                                : SMP Xaverius 2 Palembang

Lesson                          : Arithmetic

Class/Semester               : IX/Even

Time                               : 2 x 40 minutes

Standard Competence     : Understanding the row and rank of number, and using in finishing problem.

Based Competence           : Definite the number and the first tribe of arithmetic’s  rank.

Indicator                        : 1. Definite the number and the first tribe of

      arithmetic’s rank

                                         2. Definite the part of arithmetic’s rank

                                         3. Definite the number and the first tribe of

      arithmetic’s rank if the tribes to n are known.

 

A. The Purposes of Lesson

     1. Student can definite the number and the first tribe of arithmetic’s rank

     2. Student can definite the part number of arithmetic’s rank

     3. Student can definite the number and the first tribe of arithmetic’s rank if the

         tribes to n are known.

 

B. The Matter of Lesson

     The formula’s number and the first tribe of arithmetic’s rank :

           Sn = ½ n [ a + Un ]

                    = ½ n [ 2a + (n-1) b]

 

     Information : Sn = number the first tribe

                      Un = the last tribe/tribe to n

                       a   = the first tribe

                       b   = differ

                       n   = many of tribes that is numbered

 

C. Methods and Nearby

     Asking and answering, discussion, and giving assignment

 

D. The Steps of Lesson

     I.  Initial activity ( 10 minutes )

         1. Teachers do the apperception

         2. Teachers explain the purpose of lesson.

     II. Main activity ( 60 minutes )

1.     Teachers and student are interaction to definite n of the first tribe in  

      arithmetic’s rank

          2.   Teachers give assignments

          3.   Student do assignments with helping by the teacher

          4.   Teachers and student do the discussion

          5.   Student present the result of their discussion

  

     III. Final activity ( 10 minutes )

1.     Teachers teach the student to make a summary of the lesson matter

2.    The student are given assignments by the teacher

 

E. The Matter, Tools, and  Studying Source

     1. Textbooks (arithmetic’s for ninth class in Junior high school, by Arya Duta)

     2. Assignment

     3. Chart 

F. Scoring

     1. Scoring technique : test

     2. Instrument form : essay

         Example of instrument :

1.     Known : Rank of 50 real number 1+2+3+4+5+…+50

Accounting number of 50th tribe of real number’s rank!

2.    In rank arithmetic’s are known U5 = 24, U4 = 19

Definite score of S10!

3.    In rank arithmetic’s are known : S5 = 120, U1 = 5, n = 6

Accounting : a) dif   b) U4 

Knowing,                                             Palembang, December 11, 2009

Teacher                                             PPL Teacher

 

 

 

 

 

Hendrik Efendi.L.T,S.Pd                      Lusia Anggraini 

 

 

 

 

 


 

RPP KELAS X

education level: Senior High School of Srijaya Negara
Subjects: Mathematics
grade/ Semester: X / 2
Material principal: Trigonometry
teaching method: lectures, discussions, and assignments
Allocated: 4x meeting (8x45 minutes)

1. Competency Standards: Using the comparison, functions, equations, and trigonometric identities to solve the problem
2. Basic Competency: perform algebraic manipulation in the calculation of technical issues relating to comparisons, function, trigonometric equations and identities.
3. Lesson content
1.1 Trigonometric identities
To understand the trigonometric identity, consider the following equation:
a. sin x/cos x = tan x

b. 1/cos x = sec x

c. i/sin x = cosec x

d. cos x / sin x = cotan x

e. 1/tan x = cotan x

f.sin2 x +cos2 x = 1


1.2 the area of triangle

L=1/2at


With a = length of the base and t = high
 a length of three sides if known
L =squere root from  (s-a)(s-b)(s-c)     with  s=1/2 (a+b+c)
b. if known length of two sides and a large corner flanked both sides of the

L = ½ ab sin C

= ½ ac sin B

=1/2 bc sin A


c. if known to a side and two angles that flank:
L = a2sin B.sin A/ 2 sin A

4. indicator
• Use trigonometric identities to solve the problem
• Using a trigonometric ratio to find area of triangle
• Resolving issues related to the comparison, functions, trigonometric equations and identities
5. goal
• Students can use algebraic manipulation of trigonometric identities
• Students can use the comparison in the search area of the triangle trigonometry
• Students can Resolving problems associated with comparisons, function, trigonometric equations and identities
6.strategi learning

Activity

Time/ secons

Aspect life skill that is developed


1. preliminary
-Motivation: the importance of this material to use compare, functions, equations and trigonometric identities to solve the problem.
-Prerequisite: understanding of angles and triangles.
      II. core activities:
-Teacher: describes the algebraic manipulation in the calculation of technical issues relating to compare, functions, equations and identities trigonometry
-Students:-notice
           -Active discussion
      III. closing:
            -Make summary
            -competency test




20

 

 

 

 

 

 

280

 

 

 

 

 

 

60

Personal and academic


 

 

 

 

Personal and academic


 

 

 

 

Personal and academic



7. Instructional media:
Calculator, ruler

8. rating
a. type of bill: Quis
b.tindak information: - students declared successful if the level achieved 65% or more
             - Provide remedial programs for students whose achievement level is less than 65%
              -Provide enrichment programs for students whose achievement levels of more than 65%
9. Evaluation
Problem:
. prove the following trigonometric identities :

1. 2 csc2 x- csc4 x =1-cot4 x

Answer:

2 csc2 x- csc4 x  = csc2 x(2-csc2 x)

                            =(1 + cot2x)(2-(1 + cot2 x))

                =1-cot4 x

So proven 2 csc2 x- csc4 x =1-cot4 x

2.  about: determine area, if known a = 7, b = 13, c = 1350
Answer: from the formula L  = ½ absin C

 

                        L = ½ .7.13 sin 1350

                           =32,17

So vast is 32,17 unit area triangles

3. about: determine area, if known a = 6, b = 450, c = 600
Answer:
With the sine rule is obtained:
           A = 1800 - (B + C)
              = 1800 - (450 +600)
              = 750

The rules of sinus acquition :

           A = 1800-(B+C)

                   =1800 –(450 +600)

                  =750

Use the formula  L = b2.sin A sin C/ 2 sin B

                              = 62 sin 750sin 600/sin 450

                              =21,29

 

10. source readings:
-X grade math textbooks
Other relevant books
-LKS

11. Closing

1. teacher ask the students to together repeat what they’ve learned today orally.

2. teacher gives the home work to the student.

3. Teacher finished the lesson that day.

 

 

 

 

 

 

 

 

 

 

RPP KELAS XI

Name of School         :           SMA Negeri 1 Belitang
Subject                       :           Mathematics
Grade/semester          :           XI/1

Standart of competency        : 1. Using the order of statistics, count method and nature of opportunity.

Basic Competency                 : 1.3 Counting the concentration size measure, situation size measure and size measure spreading of data then its interpretation

Indicator                                : 1. Read data in the form of frequency distribution tables

                                                  2. Present data in the form of frequency distribution tables

                                                  3. Determine the average, median, and modus

Allocation of Time                 : 2 hour lesson (1 meeting)

learning objectives                 : 1. Students can Read data in the form of frequency distribution tables

                                                  2. Student can Present data in the form of frequency distribution tables

                                                  3. Student can the average, median, and modus

Learning materials                : concentration size measure are average, median, and modus

Learning Method                  : Question and answer, discussion, and home work.

Learning Steps                      :      

I. Initial activity
        1. Teacher explains the purpose of learning.
        2. Teachers do apersepsi, students are reminded again about how to present the subject in

 the form of frequency distribution tables

II. Main Activity
                        1. Through discussion of the question and answer series teachers and students to  

                                        discuss average, median, and modus
                                    2. As a group working on guided exercises, teachers around to provide assistance as  

                                        necessary.                   
                                    3. Students working on individual tasks to determine the absorption of learning

                                        material.
                        III. Final Activity
                                     1. with theacher guidance students are asked to make a summary of the study.

                                    2. Students and teachers reflect on learning activities.
                                    3. Teachers give homework

Equipment and source material
     
1. XI grade math textbooks
      2. Math websites
      3. Worksheet (LKS)

Assessment

                   Technic                            : The written test
 Form of instrument          : Test descriptions

Examples of instruments:
there  are the value of mathematics examination

skor

Many of student

40-49

1

50-59

4

60-69

8

70-79

14

80-89

10

90-99

3

                  Question : determine the average of this data !

                  Answer :

Skor

Frequency

Titik Tengah (Xi)

Fi.Xi

40-49

1

44,5

44,5

50-59

4

54,5

218

60-69

8

64,5

516

70-79

14

74,5

1043

80-89

10

84,5

845

90-99

3

94,5

283,5

 

 

According to the formula of average , we can solve this problem :so the average is 73,75

 

RPP KELAS XII

Name of School          : SMA Negeri 1 Palembang
Subject                                    : Mathematics
Grade/semester           : XII/II

 Competency Standard
4. Using the concept of rows and progessions in solving problems.
Basic Competence
4.4 Solving mathematics model of the problems associated with series
      and interpretation.
Indicator
     Using the properties and formulas of arithmetic and geometric series
     to solve problems related to the series.
Allocation of Time     : 2 hour lesson (1 meeting)

 A. Learning Objective
     Students can use the properties and formulas on rows and rows of arithmetic
     geometry to solve problems related to the series.
B. Learning Materials
     Rows and progession of arithmetic, sequences and series geometry
C. Learning Method
     Question and answer, discussion, and home work.
D. Learning Steps
     I. Initial activity
        1. Teacher explains the purpose of learning.
        2. Teachers do apersepsi, students are reminded again about the properties and

            Formula the arithmetic and geometric series.

   II. Main Activity
       1. Through discussion of the question and answer series teachers and students to  

           discuss arithmetic and geometry.
       2. As a group working on guided exercises, teachers around to provide assistance as  

           necessary.
       3. Students working on individual tasks to determine the absorption of learning

           material.
  III. Final Activity
      1. With teacher guidance students are asked to make a summary of the study.

      2. Students and teachers reflect on learning activities.
      3. Teachers give homework
E. Equipment and source material
     
1. XII grade math textbooks
      2. Math websites
      3. Worksheet (LKS)
F. Assessment
      Technic                              : The written test
      Form of instrument           : Test descriptions
     

       Examples of instruments:
      In January 2010 Nisa saving amount to Rp 50.000,00. In the next month Nisa saving

      of Rp 75.000,00; Rp 100.000,00; USD 125,000.00; so forth until the month of

      December 2010. What is the sum of all Nisa saving until the end of 2010?
      Solution:

Month

January

February

March

April

.……..

December

Saving

50.000

75.000

100.000

125.000

………

………..

 

 

 

     Proof :
    50,000 +75,000 +100,000 +125,000 +...+ u12
    a = 50 000
    b = 25 000
    the 12th term is determined by the relation:
    u12 = a +11 b
    u12 = 50,000 +11 (25,000)
          = 325 000
   The number of first rows of the 12th term of this arithmetic is determined by the  

    relation:
   S12 = (a + u12)
   S12 = 6 (50,000 + 325,000)
         = 2.250.000
   So, the amount of saving overall Nisa until the end of the year amounted to

   Rp 2.250.000

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 


Komentar:


belum ada komentar...


Kirim Komentar Anda:

Nama Anda (wajib diisi) E-Mail (tidak dipublikasikan) http:// Website, Blog, Facebook, dll (wajib diisi)


<-- isi kode di atas (wajib diisi)

grinLOLcheesesmilewinksmirkrolleyesconfused
surprisedbig surprisetongue laughtongue rolleyetongue winkraspberryblank starelong face
ohhgrrrgulpoh ohdownerred facesickshut eye
hmmmmadangryzipperkissshockcool smilecool smirk
cool grincool hmmcool madcool cheesevampiresnakeexcaimquestion