Observation Report in SMPN 1 Palembang

Kategori: Welcome to My Life
Diposting oleh alex pada Senin, 15 November 2010

Have experience of teaching is a science that is obtained from a process that really requires perseverance and tenacity.
In this process, I as a student of mathematics courses Sriwijaya University have the opportunity to make observations to SMPN 1 Palembang. The observation is done so that I know about teaching and learning process conducted in an international school.
I realize that my task will be always associated with education, then it starts from now I have to keep learning to have the basics of learning to be applied when teaching. This observation is due to the duty of the Professor. Dr. Zulkardi which is one of the mathematics education lecturer who really cares about his students to have the ability to teach as a teacher of mathematics that are reliable and also have the ability to speak English very well.
I am very happy to perform this task for the good will I earn.

This observation I do on the 12th of november 2010 in SMP N 1 Palembang on at 9.30 am, with my group of friends.

They are Septy RM Siregar, Ismel Dwi P, and Nur Hardianty.

This observation has indeed been done by other friends in the days before and had divided several groups that have been scheduled each.
Me and my friends at first a bit skeptical of this observation will run smoothly or not. Because we see students who are so active in learning.
When we entered the classroom, they immediately gave us a warm welcome. They laughed so cheerful and friendly as he asked us to introduce ourselves to the class.

When finished introducing themselves, they immediately invited us to discuss their homework ie maths. We also fulfill their desire to discuss their homework. The class is noisy but friendly to make us comfortable learning with the kids class is 7.2. They are funny and adorable, and they did not hesitate to ask about how the college system at the University of Sriwijaya. We would be happy to answer and too friendly to them.

We realize they have the motivation to learn is very high, this can be seen from the way they ask questions and solving problems is given. So we as students should be more spur motivation to become a professional mathematics teacher.

In my opinion, this observation should be frequently done in order to boost motivation, especially motivation to be more accustomed to being loved the world of education. because if we have been happy with something then it will produce something extraordinary.

 

The following are photos of the results of observations conducted in  SMPN 1 Palembang:

 

 


Puisi Matematika

Kategori: Welcome to My Life
Diposting oleh alex pada Kamis, 14 Oktober 2010

Puisi Matematika
 


-----------------------------------------------------------------------------
Definisi Keikhlasan


Ragaku terus berotasi disini
tapi serasionalnya aku ingin pergi
pergi dan takkan pernah ku tengok lagi
karena perih terlanjur mensubstitusi

di tempat ini hitam mendominasi
di tempat ini kelam mengeliminasi
bagai relasi tanpa fungsi
bagai subgrup tak berpenghuni

Tuhan,
sampai kapan aku dapat bertahan
bertahan dari bilangan hinaan
hingga merasa vektor hidup ini nyaman

Tuhan,
bantu elemen temukan himpunan
himpunan yang dapat menghargai
hingga elemen dapat tersenyum kembali

wahai penguasa hati
definisikan aku keikhlasan
agar aku tahu cara bersabar
mengharap setetes linier kebahagian

atau teoremakan aku kebencian
agar tak kenal fungsi memaafkan
sampai titik stasioner tinggi menjulang
sampai tak satupun mereka kan ku kenang

 

Cinta ala Matematika

Saat aku bersua dengan eksponen jiwamu,
sinus kosinus hatiku bergetar
Membelah rasa

Diagonal-diagonal ruang hatimu
bersentuhan dengan diagonal-diagonal bidang hatiku

Jika aku adalah akar-akar persamaan
x1 dan x2
maka engkaulah persamaan dengan akar-akar
2x1 dan 2x2

Aku ini binatang jalang
Dari himpunan yang kosong
Kaulah integrasi belahan jiwaku
Kaulah kodomain dari fungsi hatiku

Kemana harus kucari modulus vektor hatimu?
Dengan besaran apakah harus kunyatakan cintaku?

kulihat variabel dimatamu
Matamu bagaikan 2 elipsoid
hidungmu bagaikan asimptot-asimptot hiperbola
kulihat grafik cosinus dimulutmu

modus ponen.... podue tollens....
entah dengan modus apa kusingkap
logika hatimu.....
Beribu-ribu matriks ordo 2x2 kutempuh
Bagaimana kuungkap adjoinku padamu

kujalani tiap barisan geometri yang tak hingga jumlahnya
tiap barisan aritmatika yang tak terhitung...

Akhirnya kutemui determinan matriks hatimu
Tepat saat jarum panjang dan pendek
berimpit pada pukul 10.54 6/11

Cinta Matematika

sayang hangus pipi-ku
andai tidak betapalah malunya aku
seorang kawan membayangkan :
kau serupa petugas sensus kawan,
menghitung cinta yang setiap kali mampir.

tetapi cuma tangis, kawan
yang coba kusembunyikan darimu
dengan senyum terbelenggu
lelahnya aku, kawan
tetap kugerak-gerakkan badan
tak ingin kaupajang kasihan
pada tajam tembus-mu

seorang kawan membayangkan,
tak taulah dia
terkapar di dalam
menghapus-hapus semua kenangan
atas jiwa-jiwa yang terlukai

sungguhlah kawan
cinta matematika
menisbikan hati
mengcosinuskan jiwa
tolonglah...

Puisi Matematika – Aturan & Konsep Fungsi Cinta Suci

Hari – hari yang panas… terasa begitu panas…. aku pun berujar alangkah panas nya hari – hari yang ku jalani… ternyata tak di sangka hujan pun turun di sela – sela hari yang begitu panas keesokan harinya…
Kemudian…
Hari – hari pun terasa dingin karena turunnya hujan…
sampai – sampai tubuh ku pun terasa begitu lemas… terkujur lemas di atas tempat tidur ku… sendirian ku coba mengingat – ingat kenangan ku yang dulu…
Eh….
ternyata aku teringat sebuah buku yang dulu pernah kutulis di dalam nya sebuah puisi…
Tapi puisi yang dulu pernah kubuat… kini ku ubah dengan sedikit sentuhan kata – kata matematika….

Aturan & Konsep Fungsi Cinta Suci

Adinda…
Jika akar – akar persamaan kuadrat… x1 dan x2…
Maka x1 adalah diriku… dan engaulah x2 nya…

Tanpa dirimu, hatiku bagaikan himpunan kosong…
Saat kau hadir di depanku, sinus kosinus hatiku pun bergetar…
Membelah hatiku…
Saat kau jauh hatiku gelisah… seakan…
Kita pun jauh sejauh titik tak hingga…
Membuatku ingin selalu dekat… dekat… dan terus dekat…
Bersama dengan dirimu… bagaikan garis yang sejajar…

Entah dengan modus apa ku jelaskan ini semua…
Modus ponens kah… tollens… atau… silogisme kah…
Untuk memecahkan logika hatimu…
Dan membuat diagonal – diagonal ruang hatimu…
Bersentuhan dengan diagonal – diagonal bidang hatiku…

Tapi itu semua, cumalah sebuah garis khayal dalam benak pikiranku…
Karena daerah grafik fungsi cinta terbatasi oleh titik agama…
Ooo…Ku harus menyimpan semuanya dalam kotak impianku…
Ku harus terus jalani hidup ini dalam barisan aritmatika ku…

Adinda…
Akankankah kau mau menungguku…
Hingga ku siap menjadikanmu sebagai daerah bagian hidupku…

Tapi…akankah peluang itu ku dapatkan…
Akankah waktu memihak kepadaku…
Jawabannya…
Allah lah yang mengatur semua grafik dan tabel kehidupanku…
Dan kini ku hanya dapat berusaha dan terus berdoa…
Ya Allah…kalau dia memang jodohku…
Jadikanlah ia sebagai volume ruang kehidupanku…
Amin…

 
   

Geometri Analitik Bidang Dan Ruang

Kategori: Welcome to My Life
Diposting oleh alex pada Senin, 11 Oktober 2010

 

Matematika

Euklides, matematikawan Yunani, abad ke-3 SM, seperti yang dilukiskan oleh Raffaello Sanzio di dalam detail ini dari Sekolah Athena.

Matematika (dari bahasa Yunani: μαθηματικ? - math?matiká) adalah studi besaran, struktur, ruang, dan perubahan. Para matematikawan mencari berbagai pola, merumuskan konjektur baru, dan membangun kebenaran melalui metode deduksi yang kaku dari aksioma-aksioma dan definisi-definisi yang bersesuaian.

Terdapat perselisihan tentang apakah objek-objek matematika seperti bilangan dan titik hadir secara alami, atau hanyalah buatan manusia. Seorang matematikawan Benjamin Peirce menyebut matematika sebagai "ilmu yang menggambarkan simpulan-simpulan yang penting". Di pihak lain, Albert Einstein menyatakan bahwa "sejauh hukum-hukum matematika merujuk kepada kenyataan, mereka tidaklah pasti; dan sejauh mereka pasti, mereka tidak merujuk kepada kenyataan."

Melalui penggunaan penalaran logika dan abstraksi, matematika berkembang dari pencacahan, perhitungan, pengukuran, dan pengkajian sistematis terhadap bangun dan pergerakan benda-benda fisika. Matematika praktis telah menjadi kegiatan manusia sejak adanya rekaman tertulis. Argumentasi kaku pertama muncul di dalam Matematika Yunani, terutama di dalam karya Euklides, Elemen. Matematika selalu berkembang, misalnya di Cina pada tahun 300 SM, di India pada tahun 100 M, dan di Arab pada tahun 800 M, hingga zaman Renaisans, ketika temuan baru matematika berinteraksi dengan penemuan ilmiah baru yang mengarah pada peningkatan yang cepat di dalam laju penemuan matematika yang berlanjut hingga kini.

Kini, matematika digunakan di seluruh dunia sebagai alat penting di berbagai bidang, termasuk ilmu alam, teknik, kedokteran/medis, dan ilmu sosial seperti ekonomi, dan psikologi. Matematika terapan, cabang matematika yang melingkupi penerapan pengetahuan matematika ke bidang-bidang lain, mengilhami dan membuat penggunaan temuan-temuan matematika baru, dan kadang-kadang mengarah pada pengembangan disiplin-disiplin ilmu yang sepenuhnya baru, seperti statistika dan teori permainan. Para matematikawan juga bergulat di dalam matematika murni, atau matematika untuk perkembangan matematika itu sendiri, tanpa adanya penerapan di dalam pikiran, meskipun penerapan praktis yang menjadi latar munculnya matematika murni ternyata seringkali ditemukan terkemudian.

Etimologi

Kata "matematika" berasal dari bahasa Yunani Kuno μ?θημα (máth?ma), yang berarti pengkajian, pembelajaran, ilmu, yang ruang lingkupnya menyempit, dan arti teknisnya menjadi "pengkajian matematika", bahkan demikian juga pada zaman kuno. Kata sifatnya adalah μαθηματικ?ς (math?matikós), berkaitan dengan pengkajian, atau tekun belajar, yang lebih jauhnya berarti matematis. Secara khusus, μαθηματικ? τ?χνη (math?matik? tékhn?), di dalam bahasa Latin ars mathematica, berarti seni matematika.

Bentuk jamak sering dipakai di dalam bahasa Inggris, seperti juga di dalam bahasa Perancis les mathématiques (dan jarang digunakan sebagai turunan bentuk tunggal la mathématique), merujuk pada bentuk jamak bahasa Latin yang cenderung netral mathematica (Cicero), berdasarkan bentuk jamak bahasa Yunani τα μαθηματικ? (ta math?matiká), yang dipakai Aristotle, yang terjemahan kasarnya berarti "segala hal yang matematis".Tetapi, di dalam bahasa Inggris, kata benda mathematics mengambil bentuk tunggal bila dipakai sebagai kata kerja. Di dalam ragam percakapan, matematika kerap kali disingkat sebagai math di Amerika Utara dan maths di tempat lain.

Sejarah

Sebuah quipu, yang dipakai oleh Inca untuk mencatatkan bilangan.

Evolusi matematika dapat dipandang sebagai sederetan abstraksi yang selalu bertambah banyak, atau perkataan lainnya perluasan pokok masalah. Abstraksi mula-mula, yang juga berlaku pada banyak binatang[10], adalah tentang bilangan: pernyataan bahwa dua apel dan dua jeruk (sebagai contoh) memiliki jumlah yang sama.

Selain mengetahui cara mencacah objek-objek fisika, manusia prasejarah juga mengenali cara mencacah besaran abstrak, seperti waktuhari, musim, tahun. Aritmetika dasar (penjumlahan, pengurangan, perkalian, dan pembagian) mengikuti secara alami.

Langkah selanjutnya memerlukan penulisan atau sistem lain untuk mencatatkan bilangan, semisal tali atau dawai bersimpul yang disebut quipu dipakai oleh bangsa Inca untuk menyimpan data numerik. Sistem bilangan ada banyak dan bermacam-macam, bilangan tertulis yang pertama diketahui ada di dalam naskah warisan Mesir Kuno di Kerajaan Tengah Mesir, Lembaran Matematika Rhind.

Penggunaan terkuno matematika adalah di dalam perdagangan, pengukuran tanah, pelukisan, dan pola-pola penenunan dan pencatatan waktu dan tidak pernah berkembang luas hingga tahun 3000 SM ke muka ketika orang Babilonia dan Mesir Kuno mulai menggunakan aritmetika, aljabar, dan geometri untuk penghitungan pajak dan urusan keuangan lainnya, bangunan dan konstruksi, dan astronomi. Pengkajian matematika yang sistematis di dalam kebenarannya sendiri dimulai pada zaman Yunani Kuno antara tahun 600 dan 300 SM.

Matematika sejak saat itu segera berkembang luas, dan terdapat interaksi bermanfaat antara matematika dan sains, menguntungkan kedua belah pihak. Penemuan-penemuan matematika dibuat sepanjang sejarah dan berlanjut hingga kini. Menurut Mikhail B. Sevryuk, pada Januari 2006 terbitan Bulletin of the American Mathematical Society, "Banyaknya makalah dan buku yang dilibatkan di dalam basis data Mathematical Reviews sejak 1940 (tahun pertama beroperasinya MR) kini melebihi 1,9 juta, dan melebihi 75 ribu artikel ditambahkan ke dalam basis data itu tiap tahun. Sebagian besar karya di samudera ini berisi teorema matematika baru beserta bukti-buktinya."

Ilham, matematika murni dan terapan, dan estetika

Sir Isaac Newton (1643-1727), seorang penemukalkulus infinitesimal.

Matematika muncul pada saat dihadapinya masalah-masalah yang rumit yang melibatkan kuantitas, struktur, ruang, atau perubahan. Mulanya masalah-masalah itu dijumpai di dalam perdagangan, pengukuran tanah, dan kemudian astronomi; kini, semua ilmu pengetahuan menganjurkan masalah-masalah yang dikaji oleh para matematikawan, dan banyak masalah yang muncul di dalam matematika itu sendiri. Misalnya, seorang fisikawan Richard Feynman menemukan rumus integral lintasan mekanika kuantum menggunakan paduan nalar matematika dan wawasan fisika, dan teori dawai masa kini, teori ilmiah yang masih berkembang yang berupaya membersatukan empat gaya dasar alami, terus saja mengilhami matematika baru.Beberapa matematika hanya bersesuaian di dalam wilayah yang mengilhaminya, dan diterapkan untuk memecahkan masalah lanjutan di wilayah itu. Tetapi seringkali matematika diilhami oleh bukti-bukti di satu wilayah ternyata bermanfaat juga di banyak wilayah lainnya, dan menggabungkan persediaan umum konsep-konsep matematika. Fakta yang menakjubkan bahwa matematika "paling murni" sering beralih menjadi memiliki terapan praktis adalah apa yang Eugene Wigner memanggilnya sebagai "Ketidakefektifan Matematika tak ternalar di dalam Ilmu Pengetahuan Alam".

Seperti di sebagian besar wilayah pengkajian, ledakan pengetahuan di zaman ilmiah telah mengarah pada pengkhususan di dalam matematika. Satu perbedaan utama adalah di antara matematika murni dan matematika terapan: sebagian besar matematikawan memusatkan penelitian mereka hanya pada satu wilayah ini, dan kadang-kadang pilihan ini dibuat sedini perkuliahan program sarjana mereka. Beberapa wilayah matematika terapan telah digabungkan dengan tradisi-tradisi yang bersesuaian di luar matematika dan menjadi disiplin yang memiliki hak tersendiri, termasuk statistika, riset operasi, dan ilmu komputer.

Mereka yang berminat kepada matematika seringkali menjumpai suatu aspek estetika tertentu di banyak matematika. Banyak matematikawan berbicara tentang keanggunan matematika, estetika yang tersirat, dan keindahan dari dalamnya. Kesederhanaan dan keumumannya dihargai. Terdapat keindahan di dalam kesederhanaan dan keanggunan bukti yang diberikan, semisal bukti Euclid yakni bahwa terdapat tak-terhingga banyaknya bilangan prima, dan di dalam metode numerik yang anggun bahwa perhitungan laju, yakni transformasi Fourier cepat. G. H. Hardy di dalam A Mathematician's Apology mengungkapkan keyakinan bahwa penganggapan estetika ini, di dalamnya sendiri, cukup untuk mendukung pengkajian matematika murni.[15] Para matematikawan sering bekerja keras menemukan bukti teorema yang anggun secara khusus, pencarian Paul Erd?s sering berkutat pada sejenis pencarian akar dari "Alkitab" di mana Tuhan telah menuliskan bukti-bukti kesukaannya.[16][17] Kepopularan matematika rekreasi adalah isyarat lain bahwa kegembiraan banyak dijumpai ketika seseorang mampu memecahkan soal-soal matematika.

Notasi, bahasa, dan kekakuan

Leonhard Euler. Mungkin seorang matematikawan yang terbanyak menghasilkan temuan sepanjang masa

Sebagian besar notasi matematika yang digunakan saat ini tidaklah ditemukan hingga abad ke-16. Pada abad ke-18, Euler bertanggung jawab atas banyak notasi yang digunakan saat ini. Notasi modern membuat matematika lebih mudah bagi para profesional, tetapi para pemula sering menemukannya sebagai sesuatu yang mengerikan. Terjadi pemadatan yang amat sangat: sedikit lambang berisi informasi yang kaya. Seperti notasi musik, notasi matematika modern memiliki tata kalimat yang kaku dan menyandikan informasi yang barangkali sukar bila dituliskan menurut cara lain.

Bahasa matematika dapat juga terkesan sukar bagi para pemula. Kata-kata seperti atau dan hanya memiliki arti yang lebih presisi daripada di dalam percakapan sehari-hari. Selain itu, kata-kata semisal terbuka dan lapangan memberikan arti khusus matematika. Jargon matematika termasuk istilah-istilah teknis semisal homomorfisme dan terintegralkan. Tetapi ada alasan untuk notasi khusus dan jargon teknis ini: matematika memerlukan presisi yang lebih dari sekadar percakapan sehari-hari. Para matematikawan menyebut presisi bahasa dan logika ini sebagai "kaku" (rigor).

Lambang ketakhinggaan di dalam beberapa gaya sajian.

Kaku secara mendasar adalah tentang bukti matematika. Para matematikawan ingin teorema mereka mengikuti aksioma-aksioma dengan maksud penalaran yang sistematik. Ini untuk mencegah "teorema" yang salah ambil, didasarkan pada praduga kegagalan, di mana banyak contoh pernah muncul di dalam sejarah subjek ini. Tingkat kekakuan diharapkan di dalam matematika selalu berubah-ubah sepanjang waktu: bangsa Yunani menginginkan dalil yang terperinci, namun pada saat itu metode yang digunakan Isaac Newton kuranglah kaku. Masalah yang melekat pada definisi-definisi yang digunakan Newton akan mengarah kepada munculnya analisis saksama dan bukti formal pada abad ke-19. Kini, para matematikawan masih terus beradu argumentasi tentang bukti berbantuan-komputer. Karena perhitungan besar sangatlah sukar diperiksa, bukti-bukti itu mungkin saja tidak cukup kaku.

Aksioma menurut pemikiran tradisional adalah "kebenaran yang menjadi bukti dengan sendirinya", tetapi konsep ini memicu persoalan. Pada tingkatan formal, sebuah aksioma hanyalah seutas dawai lambang, yang hanya memiliki makna tersirat di dalam konteks semua rumus yang terturunkan dari suatu sistem aksioma. Inilah tujuan program Hilbert untuk meletakkan semua matematika pada sebuah basis aksioma yang kokoh, tetapi menurut Teorema ketaklengkapan Gödel tiap-tiap sistem aksioma (yang cukup kuat) memiliki rumus-rumus yang tidak dapat ditentukan; dan oleh karena itulah suatu aksiomatisasi terakhir di dalam matematika adalah mustahil. Meski demikian, matematika sering dibayangkan (di dalam konteks formal) tidak lain kecuali teori himpunan di beberapa aksiomatisasi, dengan pengertian bahwa tiap-tiap pernyataan atau bukti matematika dapat dikemas ke dalam rumus-rumus teori himpunan.

Matematika sebagai ilmu pengetahuan

Carl Friedrich Gauss, menganggap dirinya sebagai "pangerannya para matematikawan", dan mengatakan matematika sebagai "Ratunya Ilmu Pengetahuan".

Carl Friedrich Gauss mengatakan matematika sebagai "Ratunya Ilmu Pengetahuan".Di dalam bahasa aslinya, Latin Regina Scientiarum, juga di dalam bahasa Jerman Königin der Wissenschaften, kata yang bersesuaian dengan ilmu pengetahuan berarti (lapangan) pengetahuan. Jelas, inipun arti asli di dalam bahasa Inggris, dan tiada keraguan bahwa matematika di dalam konteks ini adalah sebuah ilmu pengetahuan. Pengkhususan yang mempersempit makna menjadi ilmu pengetahuan alam adalah di masa terkemudian. Bila seseorang memandang ilmu pengetahuan hanya terbatas pada dunia fisika, maka matematika, atau sekurang-kurangnya matematika murni, bukanlah ilmu pengetahuan. Albert Einstein menyatakan bahwa "sejauh hukum-hukum matematika merujuk kepada kenyataan, maka mereka tidaklah pasti; dan sejauh mereka pasti, mereka tidak merujuk kepada kenyataan

Banyak filsuf yakin bahwa matematika tidaklah terpalsukan berdasarkan percobaan, dan dengan demikian bukanlah ilmu pengetahuan per definisi Karl Popper. Tetapi, di dalam karya penting tahun 1930-an tentang logika matematika menunjukkan bahwa matematika tidak bisa direduksi menjadi logika, dan Karl Popper menyimpulkan bahwa "sebagian besar teori matematika, seperti halnya fisika dan biologi, adalah hipotetis-deduktif: oleh karena itu matematika menjadi lebih dekat ke ilmu pengetahuan alam yang hipotesis-hipotesisnya adalah konjektur (dugaan), lebih daripada sebagai hal yang baru." Para bijak bestari lainnya, sebut saja Imre Lakatos, telah menerapkan satu versi pemalsuan kepada matematika itu sendiri.

Sebuah tinjauan alternatif adalah bahwa lapangan-lapangan ilmiah tertentu (misalnya fisika teoretis) adalah matematika dengan aksioma-aksioma yang ditujukan sedemikian sehingga bersesuaian dengan kenyataan. Faktanya, seorang fisikawan teoretis, J. M. Ziman, mengajukan pendapat bahwa ilmu pengetahuan adalah pengetahuan umum dan dengan demikian matematika termasuk di dalamnya. Di beberapa kasus, matematika banyak saling berbagi dengan ilmu pengetahuan fisika, sebut saja penggalian dampak-dampak logis dari beberapa anggapan. Intuisi dan percobaan juga berperan penting di dalam perumusan konjektur-konjektur, baik itu di matematika, maupun di ilmu-ilmu pengetahuan (lainnya). Matematika percobaan terus bertumbuh kembang, mengingat kepentingannya di dalam matematika, kemudian komputasi dan simulasi memainkan peran yang semakin menguat, baik itu di ilmu pengetahuan, maupun di matematika, melemahkan objeksi yang mana matematika tidak menggunakan metode ilmiah. Di dalam bukunya yang diterbitkan pada 2002 A New Kind of Science, Stephen Wolfram berdalil bahwa matematika komputasi pantas untuk digali secara empirik sebagai lapangan ilmiah di dalam haknya/kebenarannya sendiri.

Pendapat-pendapat para matematikawan terhadap hal ini adalah beraneka macam. Banyak matematikawan merasa bahwa untuk menyebut wilayah mereka sebagai ilmu pengetahuan sama saja dengan menurunkan kadar kepentingan sisi estetikanya, dan sejarahnya di dalam tujuh seni liberal tradisional; yang lainnya merasa bahwa pengabaian pranala ini terhadap ilmu pengetahuan sama saja dengan memutar-mutar mata yang buta terhadap fakta bahwa antarmuka antara matematika dan penerapannya di dalam ilmu pengetahuan dan rekayasa telah mengemudikan banyak pengembangan di dalam matematika. Satu jalan yang dimainkan oleh perbedaan sudut pandang ini adalah di dalam perbincangan filsafat apakah matematika diciptakan (seperti di dalam seni) atau ditemukan (seperti di dalam ilmu pengetahuan). Adalah wajar bagi universitas bila dibagi ke dalam bagian-bagian yang menyertakan departemen Ilmu Pengetahuan dan Matematika, ini menunjukkan bahwa lapangan-lapangan itu dipandang bersekutu tetapi mereka tidak seperti dua sisi keping uang logam. Pada tataran praktisnya, para matematikawan biasanya dikelompokkan bersama-sama para ilmuwan pada tingkatan kasar, tetapi dipisahkan pada tingkatan akhir. Ini adalah salah satu dari banyak perkara yang diperhatikan di dalam filsafat matematika.

Penghargaan matematika umumnya dipelihara supaya tetap terpisah dari kesetaraannya dengan ilmu pengetahuan. Penghargaan yang adiluhung di dalam matematika adalah Fields Medal (medali lapangan),[26][27] dimulakan pada 1936 dan kini diselenggarakan tiap empat tahunan. Penghargaan ini sering dianggap setara dengan Hadiah Nobel ilmu pengetahuan. Wolf Prize in Mathematics, dilembagakan pada 1978, mengakui masa prestasi, dan penghargaan internasional utama lainnya, Hadiah Abel, diperkenalkan pada 2003. Ini dianugerahkan bagi ruas khusus karya, dapat berupa pembaharuan, atau penyelesaian masalah yang terkemuka di dalam lapangan yang mapan. Sebuah daftar terkenal berisikan 23 masalah terbuka, yang disebut "masalah Hilbert", dihimpun pada 1900 oleh matematikawan Jerman David Hilbert. Daftar ini meraih persulangan yang besar di antara para matematikawan, dan paling sedikit sembilan dari masalah-masalah itu kini terpecahkan. Sebuah daftar baru berisi tujuh masalah penting, berjudul "Masalah Hadiah Milenium", diterbitkan pada 2000. Pemecahan tiap-tiap masalah ini berhadiah US$ 1 juta, dan hanya satu (hipotesis Riemann) yang mengalami penggandaan di dalam masalah-masalah Hilbert.

Bidang-bidang matematika

Sebuah sempoa, alat hitung sederhana yang dipakai sejak zaman kuno.

Disiplin-disiplin utama di dalam matematika pertama muncul karena kebutuhan akan perhitungan di dalam perdagangan, untuk memahami hubungan antarbilangan, untuk mengukur tanah, dan untuk meramal peristiwa astronomi. Empat kebutuhan ini secara kasar dapat dikaitkan dengan pembagian-pembagian kasar matematika ke dalam pengkajian besaran, struktur, ruang, dan perubahan (yakni aritmetika, aljabar, geometri, dan analisis). Selain pokok bahasan itu, juga terdapat pembagian-pembagian yang dipersembahkan untuk pranala-pranala penggalian dari jantung matematika ke lapangan-lapangan lain: ke logika, ke teori himpunan (dasar), ke matematika empirik dari aneka macam ilmu pengetahuan (matematika terapan), dan yang lebih baru adalah ke pengkajian kaku akan ketakpastian.

Besaran

Pengkajian besaran dimulakan dengan bilangan, pertama bilangan asli dan bilangan bulat ("semua bilangan") dan operasi aritmetika di ruang bilangan itu, yang dipersifatkan di dalam aritmetika. Sifat-sifat yang lebih dalam dari bilangan bulat dikaji di dalam teori bilangan, dari mana datangnya hasil-hasil popular seperti Teorema Terakhir Fermat. Teori bilangan juga memegang dua masalah tak terpecahkan: konjektur prima kembar dan konjektur Goldbach.

Karena sistem bilangan dikembangkan lebih jauh, bilangan bulat diakui sebagai himpunan bagian dari bilangan rasional ("pecahan"). Sementara bilangan pecahan berada di dalam bilangan real, yang dipakai untuk menyajikan besaran-besaran kontinu. Bilangan real diperumum menjadi bilangan kompleks. Inilah langkah pertama dari jenjang bilangan yang beranjak menyertakan kuarternion dan oktonion. Perhatian terhadap bilangan asli juga mengarah pada bilangan transfinit, yang memformalkan konsep pencacahan ketakhinggaan. Wilayah lain pengkajian ini adalah ukuran, yang mengarah pada bilangan kardinal dan kemudian pada konsepsi ketakhinggaan lainnya: bilangan aleph, yang memungkinkan perbandingan bermakna tentang ukuran himpunan-himpunan besar ketakhinggaan.

1, 2, 3\,\! -2, -1, 0, 1, 2\,\!  -2, \frac{2}{3}, 1.21\,\! -e, \sqrt{2}, 3, \pi\,\! 2, i, -2+3i, 2e^{i\frac{4\pi}{3}}\,\!
Bilangan asli Bilangan bulat Bilangan rasional Bilangan real Bilangan kompleks